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Two major, ~quarter-billion-$/Euro, x-ray FEL 
devices dependent upon noise start-up 
(i.e. SASE) are likely to be built by 2010
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SASE FEL “Topography” 
Lo

g
Ra

di
at

io
n 

Po
w

er

Exponential gain regime; 
fundamental spatial mode 

becomes dominant; temporal 
coherence steadily grows with z 
while frequency content narrows Saturation regime; temporal 

coherence reaches maximum, then 
decreases with z; peak of emission 
moves redward (untapered wiggler); 
strong coherent harmonic emission

Startup regime; spontaneous emission linearly 
increasing with z; initially no temporal/spatial 
coherence           significant high order spatial 
modes and broadband frequency content

Z
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Simulation codes are extensively 
used to design proposed x-ray FEL’s

• Many parameter choices, engineering specifications, 
etc., for these devices have been and will be driven by 
numerical simulation results

• The underlying simulation codes are non-trivial, both 
in their algorithms and their software structure

This begs a fundamental, multi-M$ question:

Namely, to what degree of confidence should
we believe that these codes are giving

dependable answers?
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This talk comprise a personal selection of 
topics touching on the confidence issue

• Basic FEL simulation algorithms:
– SVEA/wiggler-period averaging
– spatial mode limitations 

• Spontaneous emission/SASE start-up:
– macroparticle shot noise algorithms / harmonics
– comparison theory/code predictions
– transition from start-up to exponential growth regime

• Experimental/simulation code interface:
– LEUTL/GINGER
– TTF-FEL/FAST3D
– VISA/GENESIS



Building blocks of a typical FEL code
Diagnostic Output Module

E(x,y,z,t)     modes, 
far field, spectrum

f(x,y,px,py,γ,θ) energy 
extraction, microbunching 

Radiation Field
Initialization

Freq. & spatial 
mode content Noise

& wakefields

EM Field Module

E(x,y,z,t) Field Solver

Slippage Space charge 

Macroparticle Initialization

x,y,px,py ∆γ Quiet start /
shot noise

Electron Beam Module

x,y,px,py
mover

γ, θ
mover

Coupling 
Eqns.

J⊥ source

Pondero-
motive
forces

Quantum 
Effects
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• Eikonal approximation (aka SVEA) :
– Radiation gain length, synchrotron wavelength, diffraction, 

refraction, space charge scale lengths >> λs (“slow variation”)
– “Fast” time / z variation occurs within a relatively narrow

bandpass around a central (ω,k)  (modes with peak growth)

– Hyperbolic EM eqns transformedtransformed to parabolic diffusion eqns

To model x-ray FELs, a code must make 
several approximations to be practical

( )tzkitzrftzrf 00exp),,(),,( ~ ω−⇒
rr

•Discrete radial grid finite transverse mode number
–CPU speed, memory sizes limit grid resolution, dimensionality

(GINGER – 2.5D,  FAST3D&GENESIS – 3D)
–Disk sizes, network speeds limit diagnostic storage
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Standard code approximations cont.
• “Wiggler-period-averaged” source, dynamics equations

– forward radiation mode dominates
– small change in  E over one wiggle period
– equivalent to eikonal approximation in beam frame

• “PIC” representation of e- phase space
– finite macroparticle number, smoothed source

• “Slippage” applied at discrete z intervals
– discrete temporal zoning finite # longitudinal modes
– numerically-limited frequency bandpass

• Classical approx. neglect of quantum effects
– # photons/mode >> 1 
– recoil effects small:   hν << γ mec2

– GENESIS includes δγ increase from incoherent emission

~



WM Fawley – FEL2002 – X-ray FEL simulation… Accelerator and Fusion Research Division

SVEA, wiggler-period averaging place limits on 
temporal slicing of e-beam, radiation

• Time-domain codes (e.g. GINGER, GENESIS, FAST3D) uniformly slice 
the e-beam & radiation field temporally

• Slippage applied at discrete intervals in t,z with 
∆zslip= λw x c∆tslice / λ0

– ∆zslip determines the width of the bandpass window ∆ω
around the central angular frequency ω0

– minimum value for ∆zslip = λw   ∆ω ≤ ½ ω0

– neither the SVEA nor wiggler-period averaging apply to 
frequencies near or beyond this value

• For ∆zslip / λw ≥ O(4) and LG /∆zslip ≥ O(8), SVEA and wiggler-
period averaging ~ OK for all wavelengths within the bandpass

• However, limited λ bandpass can present other difficulties…
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Example of unphysical aliasing + gain 
suppression due to limited bandpass

LCLS parameters: 14.35 GeV,
3400A, 1.2 mm-mrad, λw=3 cm
FODO focusing lattice
K=3.71 chosen to give peak 
FEL gain at 1.5000 nm
Lgain ~ 5.3 m
192 slices in time 
∆zslip = 64 cm >> λw

Each run initialized with 
1.0 kW / frequency bin
Center wavelength of 
simulation bandpass varied 
from 1.5000 to 1.5035 nm

Result: Gain unphysically drops by ~1.8X from bandpass center to edge
caution must be used when simulating e-beam energy chirp



Wiggler-period averaging can break down 
for higher order spatial modes

• High-order spatial modes (in r or x,y) have relatively 
little gain but do suffer significant diffraction: 

• Requiring mode diffraction length > λw equivalent to:
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• For LCLS with β~18 m, Mcrit ~ 12  and one expects few problems
for reasonable transverse grid resolution

• For DESY 70-nm with β~1.0 m, Mcrit ~ 2.4 possible problems
• For VISA with β~0.27 m, Mcrit ~ 1 !! 

coupling to “high”-order modes and fundamental probably
less accurately followed during start-up phase



The Importance of Being Noisey…
• SASE is amplified shot noise
• Ergo, a code must load noise to be accurate/believable

• One need not /cannot load all ~1010 actual beam e-
– only small frequency portion of noise spectrum becomes

amplified, i.e. ∆ω/ω0 ~ O(ρ) << 1
– similarly, causality & limited slippage isolate most 

temporal slices from one another 

But

~105 macroparticles can accurately predict 
the gross (and most fine) aspects of a SASE 
FEL from start-up to deep saturation iff the 
noise load algorithm is appropriately clever
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Microbunching loading schemes

θ
γ

2π0

• (Presumed) Poisson statistics gives ensemble-
averaged properties of moments of

• Quiet start (e.g. bit-reversal) microscopic 6D 
noise-free distribution with minimal 1st –order 
correlations between different coordinates

• Most schemes load microbunching noise
in longitudinal position only
– moment fluctuations in other 5D 

coordinates weakly couple to bunching, e.g.

• “Penman-McNeil” like-scheme: 
δθ assigned independent of 5D position
extension: “clone” particles at θi + π

• Litvinenko scheme: e-,e+ pair at same 6D 
location, δθ separation produces bunching

( )tpxf ,,, γδ rr

(r,θ)

1A 1B

2A 2B

3A3B

4B 4A
fδ

γρ
γδ ∆≈

Pg
shot NL

zbb 8/



WM Fawley – FEL2002 – X-ray FEL simulation… Accelerator and Fusion Research Division

Variation in βz possible harmonic problems
• βz variation (δγ, ε)  can cause unphysical

microbunching even in a drifting beam
– partial suppression (Penman-McNeil 

scheme) by greater clone #
– FAST3D applies “striping” correction 

to global (γ,θ) distribution to eliminate
<(γ0−γi)

n θi> correlations
– higher harmonics most sensitive

• In strong gain regime, bunching at 
harmonic m coupled to (m±1)
– 2m+1 clones at same βz needed to 

obtain proper growth of harmonic m
– 8-fold symmetry needed for 3rd harmonic

θ

γ

2π0

1A 1B

4B4A

3A3B

2A2B

Later in z: Without clones, 
very strong bunching at 
fundamental; with clones, 
fundamental suppressed but 
strong bunching at cos 2θ
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Beamlet loading scheme…
• GINGER, GENESIS divide each temporal slice into many 

(~128-2048) individual beamlets,
– each beamlet has unique initial 5D coordinate (x, y, px, py, γ)
– each has 2M members, each with identical 5D coordinate
– members loaded in θ with uniform separation of π/M ; 

⇒⇒ zero bunching for drifting beam through harmonics 1-M 
• For GINGER,

– SASE harmonics important (cascades, multi-λw undulators) 
– noise microbunching δθ distribution determined individually

for each beamlet j (see paper in July PRST-AB)
– δθij composed of sum of complex phasors over harmonics 1-M, 
– each beamlet harmonic follows negative exponential distribution

Note: effective # for shot noise statistics = # e- in total ∆t interval
between adjacent slices,  not in just one wavelength



GINGER simulation of spontaneous 
emission in the very low gain regime
Parameters: IB=1.0 A, γ=500, λs=100 nm, εn=1 π mm-mrad (4πε/λs = 0.25), 
λw=2.5 cm, K=1.414, ∆zslip = λw , 2048 macroparticles/slice*256 slices*8 runs

Excellent agreement in 
far field intensity
5X discrepancy in total power

0.19 W near-field power integrated
over ±4% bandpass agrees with
0.21 W theory prediction



GINGER Simulation of Spontaneous 
Emission Startup in LCLS

Parameters: std. LCLS --- 3400A, 14.35 GeV, 1.2 mm-mrad, 0.15 nm, 
K=3.71, 4πε/λs= 3.6;  scan of spontaneous emission sensitivity to ∆zslip

total power results: 
- >400X discrepancy theory/sim.
- stronger sensitivity to ∆zslip

far field intensity results:
- generally agrees within ~25%
- some sensitivity to ∆zslip ≡ bandpass

High order, non-axisymetric modes quite important in total power emission



Linear FAST simulation, analytic results 
show contribution of high order modes

Radiation power vs z in gain 
lengths for 3 lowest azimuthal
modes (each again summed 
over lowest 3 radial modes); 
lines=theory; dots=simulation

Transverse radiation profiles 
across 1 temporal radiation 
slice at z/LG=5 and 10

Courtesy M. Yurkov

Results from Saldin et al., Opt.
Comm. 186 (2000), 1895.

- no energy spread or emittance, 
LG/ZR=1, 7 x 107 e- / λs

- 3D linearized code FAST



GINGER “standard” LCLS example of noise 
-> organized start-up -> exponential gain

Total power shows 
development into 
spikes by z~10 m

Normalized power 
shows self-similar 
spike propagation 
[c –vG ]~ 2/3 vslip

Norm. bunching 
shows self-similar 
spike propagation
at vG > 〈vz〉

On-axis far field 
radiation sub-c
spike propagation 
evident earlier in z



Nonlinear harmonic growth in the
SASE regime – GINGER / LEUTL example
Sim. parameters: 5π mm-mrad, 
150 A, 519 nm, 219.5 MeV, 
∆γ=0.43, ρ ~ 2.1 x 10-3 ;

32768 macroparticles/slice x 
384 slices; 150 CPU hours split 
over 64 IBM-SP4 processsors

21.6 m

1.0

0.1

10-4

10-3

10-2Fundamental b1, b3 and b5 at z=13.5m

Bunching “snapshots” just before 
saturation show usual spikiness; 
spike width in b3, b5 narrower 
but not by 3,5 fold
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Highlights of 3 simulation/expt. efforts
(1) LEUTL/GINGER          (2) TTF-FEL/FAST3D 

(3) VISA/GENESIS
• Common features:

– Beam compressor complicated 5D phase space
– Short pulse effects important
– Pulse-to-pulse machine repeatibility fair-to-poor

• Common prediction successes:
– Lgain, Psat , zsat
– θFWHM
– Epulse, pulse-to-pulse output statistics (TTF, VISA)
– Harmonic content (LEUTL, VISA)



GINGER modeling of APS LEUTL results
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530 nm
630 A
8.5 mm-mrad
0.19 ps

385 nm
184 A
7.1 mm-mrad
0.65 ps

530 nm
171 A
8.5 mm-mrad
0.77 ps

LEUTL Experiment: 
beam charge~0.3 nc 
each dot =100 shots
error bar 25-75th percentile
Pulse length in Case B purposely 
increased to prevent saturation

GINGER Simulation:
- simple Gaussian 5D distributions
- energy spread σ slightly adjusted
from nominal value for better fit

-output energy normalized for
exact overlap at z=5 m

- each solid line = 50 GINGER
short pulse SASE runs with
different random # seeds

Courtesy Z. Huang - APS



FAST3D modeling of 100-nm TTF-FEL

FAST3DE

I

Results published in Ayvazyan et al., PRL, 88, 104802 (11 Mar 02)
- Key conclusion is emission comes from 1.3-kA current spike

produced by bunch compressor  (VISA-like)
- Experimental measurement of LG, output power fluctuations,

spectral width gives independent value for IB, τp, ρ
- FAST3D modelers found excellent agreement (including

angular distribution) using IB =1.3 kA, Gaussian profile with
FWHM=120 fs, δE=100 KeV, ε = 6π mm-mrad



VISA electron beam properties 
reconstructed and input to GENESIS code
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PARMELA + ELEGANT injector
to undulator simulation



Comparison of GENESIS simulation 
and VISA experimental results

Far Field (Measurement)GENESIS simulation shows excellent 
agreement with experimental results:
• Power growth (including saturation)
• Spectrum + bandwidth (not shown here)
• (Fluctuations – insufficient # sim. runs)

•Near & far field spatial mode distribution
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Different individuals will have differing perspectives 
on the present robustness of x-ray FEL modeling

From microwave to infrared to far UV
wavelengths, simulation codes have had 
good success in reproducing gain lengths, 
effective start-up and saturation power, 
far field angle, etc., for SASE-based FEL’s
A critical factor is good knowledge of beam
parameters, including 6D phase space 
Undoubtedly, there will be some surprises
in the 4- to 0.15-nm region
However, funding decisions often also have
a surprisingly random component…



Different individuals will have differing perspectives 
on the robustness of x-ray FEL modeling

I wonder  if
this means I can

get OMB to license 
SDDS format for the 

2004 budget…

250-M$ 
for a gizmo in a state

I lost by 11% in 2000;
I wonder what Karl R.
will advise me about

this one…

Here Mr. President you
can see the conservative
predictions of our very
ELEGANT modeling…

APS control room, 22 July 2002
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